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ABSTRACT 

In the complex plane the p-harmonic equation div(IVuJp-2Vu)=O, 
I < p < ~ ,  exhibits some features reminiscent of Function Theory. Our 
results about curvature in this structure complement known facts about 
minimal surfaces and harmonic functions. Quasiregular mappings are used. 

1. Introduction 

In the complex plane the p-harmonic equation 

(1.1) Oxx I Vu Ip-2~x) IVul ~-2 - -0  

exhibits some special features reminiscent of Function Theory. Here 
1 < p < oo and (1.1) reduces to the Laplace equation Au = 0, when p = 2. The 
solutions are called p-harmonic functions and they are real-analytic except 
possibly at isolated points. 

This paper is devoted to the study of  curvature in a structure induced by p-  
harmonic functions. Our results liken known facts about minimal  surfaces and 
about harmonic functions. 

Given a p-harmonic  function u in a simply connected domain G c C, one 
can construct a conjugate function v that is q-harmonic in G, 1/p + l/q = 1, 
and Vu .  Vv -- 0. Moreover, 

F = u + i v  
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admits a Sto~'low representat ion.  (See Section 3 for this kind of  conjugation.) 
Note that the orthogonality Vu .  Vv = 0 means that the level lines of u are 
orthogona! to those ofv. This is the motivation for our study of  the level lines 
of  p-harmonic  functions. I f k  denotes the curvature for the level lines of u and 
- h the same quantity with respect to the conjugate function v, then (a = k - ih 

is locally integrable over G to any power s < 2. This result (Theorem 4.11) is 
sharp even in the classical case, when u + i v is holomorphic. 

In Section 5 we study the Gauss curvature K for the corresponding p- 
harmonic surfaces "x3 = U(Xl, x2)" in R 3. Minimal surfaces and harmonic 
surfaces (p  = 2) have the property that K _-< 0 and K = 0 only at isolated 
points, unless the surface is a plane. Even p-harmonic  surfaces obey this 
rigidity (Theorem 5.3). 

Entire p-harmonic surfaces (the corresponding p-harmonic functions are 
defined in the whole complex plane) have total curvature < - 2 ~  or = 0 
(Theorem 5.5). Only the planes have total curvature zero among the p- 
harmonic surfaces. The gap ( - 2x, 0) reflects a fascinating phenomenon.  Our 
proof  is based upon the Picard theorem for quasiregular mappings. 

In Sections 2 and 3 we have, for the benefit of  the reader, assembled 
necessary preliminaries. 

2. Quasiregular mappings and p-harmonic functions 

To be on the safe side we clarify the concept of  solutions. A function u in the 
local Sobolev space W~P(G), G being a domain in R n, and 1 < p < oo, is called 
p - h a r m o n i c  in G, if 

(2.1) f 6  r Vu p-2Vu • Vr/dx = 0 

whenever t 1 E C ~ ( G ) .  This is the weak form of  the equation 
div(I Vu 1 °-2Vu) = 0. It is known that u is continuous (after a redefinition in a 
set of  measure zero) and, indeed, even that Vu is continuous. Actually, u is of 
class CILa(G) and the second derivatives exist in Sobolev's sense, cf. [D], [E], 
[Le 3], [To], and [U]. 

From now on we confine the discussion to the complex plane. In the non- 
linear case p =# 2 the p-harmonic  equation 

(2.2) [ Vu [2Au + -p - 2 Vu .  V [ Vu [2 = 0 
2 
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degenerates at points where Vu --0.  A way of handling this difficulty was 
proposed by B. Bojarski and T. Iwaniec, who observed that the complex 
gradient f =  ux - iuy of a p-harmonic function u is quasiregular [B-I 1]. (An 
analogous situation is encountered in connection with uniformly subsonic gas 
flows [Be, Section 8].) Another proof for the quasiregularity has been con- 
structed by J. Manfredi, cf. [M]. See also [A-L, Theorem 1 ]. A slightly different 
approach can be found in [A1 1 ]. 

2.3. THEOREM. (The continuous representative for) the complex gradient 
f =  Ux - iu r of  a p-harmonic function u in G is quasiregular. More precisely 

(i) f is continuous in G, 
(ii) the Sobolev derivatives f~ and f~ exist and belong to L ?o~( G), and 

(iii) I f~l < I 1 - 2/pl lf~l  a.e. in G. 

It is essential that I 1 - 2/p I < 1. For the theory ofquasiregular mappings in 
the plane we refer the reader to [Bo], [Re], [V]. An important consequence of 
the quasiregularity is that f admi t s  a Stodow representation f = h o ~, ~ being 
quasiconformal in G (~ is a homeomorphism satisfying the same conditions 
(i), (ii), and (iii) as f )  and h being holomorphic in the domain ~(G). This 
implies that the zeros of f a r e  isolated points unless u is constant, i.e., the 
singular set 

(2.4) 

is discrete. The formula 

S={z alf(z)=O} 

(2.5) f _ 2 - p ~ f ~ + ; . ~ } 2 p  

holds outside S [B-I 1 ], and for p = 2 we have merely the Cauchy-Riemann 
equations f~ = 0. 

Outside the singular set u is even real-analytic [Le 1, p. 208]. There is a 
striking phenomenon in the non-linear case p ~ 2: i f f (z)  = 0 at some z ~ G 
and if u is real-analytic in a neighborhood of z, then u reduces to a constant 
[Le 2]. This is not true for harmonic functions (p  = 2)! 

Note that (iii) can be written as 

(2.6) i f ~ 1 2 + l f ~ 1 2 ~ ( p _ l _ t  - 1 ) 12 - p - 1 (If~ If~12)- 

The Jacobian Js -- If~ 12 - If~ ]2 of f is real-analytic in G \ S  and its zeros in 
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G \ S are, indeed, isolated, unless u reduces to a linear function [A-L, Theorem 
3]. This yields interesting information about the Gauss curvature (5.2) of a p- 
harmonic surface. 

According to an advanced theory due to Yu. G. Reshetnyak the coordinate 
functions of a quasiregular mapping are free extremals for a variational 
integral, the integrand of which, however, depends on the quasiregular map- 
ping itself (Dirichlet's principle). The corresponding Euler-Lagrange equation 
is elliptic and in the two-dimensional case it is also linear. See [R 2] or [B-I 2] 
for the details. Moreover, the logarithm of the Euclidean norm of the mapping 
satisfies the same Euler-Lagrange equation as the coordinate functions [R 2]. 
See also [B-I 2, Lemma 6.2] and the presentation in [R 3]. 

From our point of view the variational approach sketched above has the 
consequence for a p-harmonic function u that 

1 
(2.7) v = log ( f =  ux -- iu r) 

Lf[ 

is a solution to the linear Euler-Lagrange equation induced by f, except at the 
singular points. In the language of [G-L-M] and [L-M] v is a super-extremal in 
G (v is a lower semicontinuous function obeying the comparison principle in G 
with respect to the solutions of the Eular-Lagrange equation). 

If f is not identically zero, then log Jfl is locally integrable in G to any finite 
power [L-M, l.emma 2.22]. A good example is the harmonic function u = 
X2 _ y2, log I f[ -- log l 2z J. The behaviour of f near its zeros is reflected in the 
sharp result below. (The analogous local integrability has been studied in [Li] 
for p-superharmonic functions and their derivatives, but the above v is not 
exactly p-superharmonic, when p ~ 2.) 

2.8. THEOREM. Suppose that u is p-harmonic in G and that f - -  u~ - iUy is 

not identically zero. Then 

whenever 0 < e < 2 and D has compact closure in G. 

PROOF. In view of Reshetnyak's theorem [B-I 2, Lemma 6.2] this is merely 
a special case of [L-M, Theorem 2.24]. [] 

To make a long story short the local integrability result expressed in 
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Theorem 2.8 is all we need from the variational approach to quasiregular 

mappings. 

3. Conjugate functions 

The purpose of the background given in this section is to motivate the study 

of level curves. 
If u is p-harmonic in a simply connected domain G then there is a function v 

(unique up to a constant) such that 

(3.1) Vx = -  ]VlljP-2uy, Vy= IVulp-2ux 

in G. For p = 2 these are the Cauchy-Riemann equations. The function v is 

q-harmonic in G, q being the conjugate exponent to p: 

1/p + 1/q = 1. 

From our point of view a most interesting feature is that 

(3.2) Vu. Vv = 0, 

i.e., the level curves of u and of v are orthogonal to each other apart from the 

singular set S. In multiply connected domains the conjugation described above 
is possible at least locally. A good example in 0 < [z [ < oo is 

p - I  
(3.3) u + i v -  [z[(P-2~(P-')+iargz (p  42)  

p - 2  

and log z (p = 2). See [A-L, §3] for this kind of function theory. 
The mapping 

F = u + i v  

is interior in the sense of Stoilow: it admits the representation F - - H  °Z, H 
being a holomorphic function and X a topological mapping of G [A-L, 
Theorem 5]. Hence the sets 

{ (x , y )eG l u(x,y) = t} 

usually represent genuine level lines. In the harmonic case (p -- q -- 2) F itself 
is holomorphic, but for p ~ 2 F is not even quasiregular in G \ S, if S ÷ ~ .  
However, F is locally quasiregular in G \ S. (This means that the restriction of 
F to any domain D with compact closure in G \ S is quasiregular.) 
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Although the level curves o fF  intersect at right angles in G \ S, other angles 
are distorted, when p # 2. The Jacobian for F = u + iv is 

(3.4) O(x, y)  q 

and it is zero precisely in the singular set S. 
The system (3.1) can be written in the form 

(3.5) g = - i l f lV -2 f  

where f =  Ux - iuy and g -- Vx - iv r. The orthogonality (3.2) between level 

lines is expressed by the relationfg + fg  = 0. We cannot resist mentioning that 

f~ = vf~ + vf~, g~ = vgz + vgz 

with the same v in both equations: 

g 

cf. (2.5). 

4. The curvature of the level lines 

For a sufficiently regular function 
"u(x ,  y) = Constant" is given by 

(4.1) 

and 

(4.2) h = 

u the curvature of the level lines 

k = - u~ Ux~ - 2U~UxUx~ + u2x u ,  

I Vu I s 

(Uxx-U.)UxU,-Ux,(U -U ) 
I Vu 13 

represents the curvature of the trajectories orthogonal to the level lines. These 
formulae can be found in ordinary books on Differential Geometry. Following 
G. Talenti [T2] we define ~o = k + ih and write (4.1) and (4.2) as 

(4.3) ~ = k + i h - - - 2 0 - - (  f ) o z  , f = u x - i U y .  

We are interested in the case when u is p-harmonic in a domain G. Let v be 
the conjugate q-harmonic function defined (at least locally) by (3.1). Suppose 
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that F = u + iv is not a linear function, so that (4.3) makes sense except 

possibly at isolated points. Outside these singular points ~a is even real- 

analytic. By (3.5) we have 

= - -  , g f v x - - i v y ,  

so that - h represents the curvature of the level lines for v. This "orientation" 
makes 

__~_~ _ 0 

: 0z( / 
into a m e r o m o ~ h i c  function in the classical case (p  = 2) and hence k! I f l  and 
h l l f l  are themselves conjugate harmonic functions in G \ S ,  when u + iv is 
ho lomo~hic .  See [T2, Theorem 3] for results of  this kind. 

However, such a nice conjugation would be too much to ask for in the 
general case. We have the following counterpart to the classical formula above. 

4.5. THEOREM. I f  u is p-harmonic, then 

Ifl  Oz p Oz 

when f = u~ -- iuy 4= O. 

PROOF. Evaluating (4.3) we have 

Oz Ill 20zj 

and using (2.5) and the rule Of/Oz = Of/O~. we arrive at 

<': ( / '  

This gives the desired formula. 

4.6. L~MMA. Suppose that u is p-harmonic in G. Then 

4p ! ~ 2  0 ln( f f )  2 + (p  • 2) 
(4.7) I¢ 12 = 0z p - 2 f 

in G \ S.  Here f - -  u,< - iuy. 

Pl 
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PROOF. We have 

0 l n ( f f ) = l  Of~ 1 Of 
Oz f Oz f Oz 

and according to (4.3) 

Hence 

ftp l O f  l a f  

If[ f dz f Oz 

B 

# # 
lfl Ifl 

- =  I~z,n<~,l  ~ - 2 0-'2 ~ O z a f ~ l  af+laf_~2.~z } 

ffi ~zln(f f )  2 - 2 1 f l  a z [ f a z + - f ~ j  

where we have used of/Oz = fff/O~. = Of/O~.. Now (2.5) yields (4.7). 

For p = 2 we have 

I ~ 1 =  O l n ( f f )  . 

For p > 2, (4.7) shows that 

,,, >_- l z,n  ,l 
For the conjugate q-harmonic function we have, by (4.4) and (4.7), 

3 2 4q ! 
~(o = i~i~) = -:- ln(gg) + 

q - 2  gOz Oz 

and hence (now q < 2) 
~Z 2 

I~o I -< ln(gg) . 

By (3.5) ln(gg) = (p - 1)ln(ff). Collecting results we have 

(4.8) In < I~ol < n(gg) < ( p  - 1 In 

when p >_-- 2. 

[] 
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4.9. THEOREM. Suppose that the p-harmonic function u and the q-harmonic 
function v are conjugate in G. Then (4.8) holds for f---  ux - iuy and g = 
vx - ivy, when p > 2. The inequalities (4.8) are reversed, when 1 < p <= 2. 

4.10. REMARK. If U is p-harmonic in a multiply connected domain, then 
the q-harmonic conjugate can be constructed locally. Hence, by (4.8), 

~zln(ff) --<l~l <=(p- l) l~zln(ff) 

globally in G, when p >= 2. The inequalities are reversed, when 1 < p _-< 2. 

Combining Remark 4.10 and Theorem 2.8 we obtain a local integrability 
result for ~ = k + ih. 

4.11. THEOREM. Suppose that u is p-harmonic in G. Then the integral 

f r o  1~ [2-edx dY < °° (0<e--< 2) 

taken over any domain D with compact closure in G, converges, whenever 
0 < e < 2 .  

As an application we mention that Theorem 4.11 can be used to estimate the 
length of a level line. If B c c G is a disk of radius r, then the quantity 

(4.12) 2rtr + f L lkldxdy 

majorizes the length of that part of any level line of u that is in B. The Stoilow 
representation for u + ip allows us to "integrate by parts" as in [AI 2, p. 2] to 
obtain (4.12). If r is small, then 

27tr d-n~Zr~ { f f a  I ~ 12/<2-~)dx dy) l-~a2 

is a good upper bound for (4.12), whenever a < 1. 

(0_-<a< 1) 

5. The Gauss curvature of a p-harmonic surface 

If u is p-harmonic in G c R 2, then x3 = u(x~, x2) can be viewed as a 
representation for a p-harmonic surface in R 3. Its Gauss curvature is 
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(5.1) K = Ux~U~ - u 2 
(1 + u 2 + u2) 2" 

In complex notation we have 

JI If~12- If~l 2 
(5.2) K =  (1 + Ill2) 2 -  (1 + Ifl2)2 ' 

where Js denotes the Jacobian o f f =  Ux - iu r The above formulae are well 
defined in G \ S, S denoting the singular set. (In the linear case p = 2, K is 
defined by (5.1) at every point. It stands to reason that "the right value" of K is 
zero at the singular points, when p ÷ 2. Since the singular set is discrete for 
non-constant p-harmonic functions, we shall not pursue this question any 
further.) 

The counterpart to the theorem below is fundamental in the theory of 
minimal surfaces [0, p. 76] and the theorem is known for harmonic surfaces 
[T 1, p. 2]. 

5.3. THEOREM. The Gauss curvature 

K < 0  

for a p-harmonic surface. Either K = 0 at most at isolated points, or the surface 
is a plane. 

PROOF. The quasiregularity off(Theorem 2.3) implies that JI > 0 a.e. See 
(2.6). By continuity J/>_- 0 everywhere except possibly in the singular set S. 
Thus K < 0. 

The second half of the theorem is harder: something more than the quasi- 
regularity of f is needed. Fortunately, the result follows immediately from 
[A-L, Theorem 3]. [] 

The fact that K is non-positive and may have only isolated zeros means that 
the p- harmonic surface cannot lie on one side of any of its tangent planes. 

The total curvature for the p-harmonic surface 

T = ((x, y, u(x, y))I (x, y)EG} 

is by definition 

(5.4) f f r K d o =  f f K x / l + l f l 2 d x d y  
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and negative except for planes. (The fact that the total curvature is negative 
except for planes is a consequence merely of the quasiregularity of the complex 
gradient Ux - iuy and hence the same conclusion is valid for a large class of 
surfaces.) As an application of the Picard theorem for quasiregular mappings 
we mention the theorem below. 

5.5. THEOREM. Suppose that u is p-harmonic in the whole plane. Then the 
corresponding p-harmonic surface has total curvature 

f f Kdo < - 2n 

except when the surface is a plane. 

PROOF. The quasiregular mappingf = Ux - iuy is by assumption defined in 
the whole plane. It has the Stoilow representation f =  h .  if, h being holomor- 
phic in C and ( : C --- C being quasiconformal. Writing ( = ~ + it/and h -- 
ht + ih2, we calculate 

Jfdx dy I h'( OI2jcdx dy 
- - f f c  K~J/T+lfl2dxdy= f f c ( 1  + Ifl2) 3'2= f f c  (l + Ih(,)12) y2 

~ f fc 'hl(()'2d~d~] > f f~ dhldh2 
(1 + Ih(()12) 3/2 = (1 + Ih 12) 3/2 - -  27r. 

We used the Picard theorem in evaluating the last integral over the whole 
plane: h takes all complex values, except possibly one, at least once. (Here one 
could refine the analysis by taking the multiplicity of h into account.) [] 

This is again a property close to a related result for minimal surfaces 
[O, Theorem 9.3, p. 85]. For harmonic surfaces ( p -- 2) a variant of the above 
result is mentioned in [T 1]. Equality holds for the hyperbolic paraboloid 

u = ½ C ( x  2 - y 2 ) ,  

C ÷ 0 denoting a constant. 
Theorem 5.5 holds for any surface defined by a function having quasiregular 

complex gradient. Theorem 5.3 relies upon a property of the Jacobian which 
does not hold in this strong version for Jacobians of  general quasiregular 
mappings. 
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